Elevating Education~
The Power of Quality Coaching in Teaching and Learning
Mission: ESC of the WR is committed to providing innovative programming and quality services to support and promote student achievement in all aspects of our educational communities within our region and state.

Vision: The ESC of the Western Reserve will be recognized as a premier educational service center that provides personalized services to inspire and support student growth and staff development to educational communities in our region and across Ohio.
The Summit Educational Service Center creates personalized solutions for Ohio educators, students and families.
Susan K. Huth
Math Consultant
susanh@summitesc.org
330-945-5600 ext. 511336

Frank Carraher
Math Consultant
fcarraher@escwr.org
440-350-2563
On the “Doggo” scale, which image resonates with you today?
Share some GOOD NEWS!

Some possible sentence starters for you:
I have…
* implemented a professional learning opportunity for teachers with engaging mathematical activities that supports the Effective Mathematical Practices
* a Coaching Success Story to share
 * worked with teachers using HQIM Math
 * created…
Let’s Energize and Jump Start with a Math Talk!

Let’s Get Your Math Brain On!
SALES IN MILLIONS OF U.S. DOLLARS

KRAFT MACARONI AND CHEESE
VELVEETA
PRIVATE LABEL*
KRAFT DELUXE
ANNIE'S
KRAFT EASY MAC

$500
$400
$300
$200
$100
$0
MAC ’N’ CHEESE BY THE MILLIONS

Americans spend millions on dried mac ’n’ cheese mixes per year. Here’s how select varieties stack up.

SALES IN MILLIONS OF U.S. DOLLARS

- KRAFT MACARONI AND CHEESE
- VELVEETA
- PRIVATE LABEL*
- KRAFT DELUXE
- ANNIE’S
- KRAFT EASY MAC

*Combined sales of private grocers’ labels

Source: Statista
MAC ‘N’ CHEESE BY THE MILLIONS

Americans spend millions on dried mac ‘n’ cheese mixes per year. Here’s how select varieties stack up.
MAC ‘N’ CHEESE A HISTORY

This classic dish has been served since medieval times!

1200s: Mac ‘n’ cheese recipes first appear in Italy.

1769: The first modern recipe for mac ‘n’ cheese is published in the cookbook *The Experienced English Housekeeper*.

1793: Thomas Jefferson purchases a machine to make his own macaroni pasta.

1937: Kraft’s boxed mac ‘n’ cheese hits shelves during the Great Depression.

1984: Velveeta Shells & Cheese is released.

2006: Kraft’s microwavable Easy Mac Cups are introduced.
Get to know our audience
Agenda

- Quality Coaching
- Sharing our experiences with Better Lesson and Instruction Partners
- Coaching Tools/Resources
Placemat Activity

List ingredients that make a fabulous salad?
Samples of what the placemat could look like
List the characteristics of Quality Coaching. What does Quality Coaching look like? sound like?
Discussion

Share out from each group.
Quality Coaching involves:

★ Build positive relationships
★ Listening
★ Formulating a Plan together
★ Focusing on what both administrators AND teachers want
★ Making Personal connections
★ Being Supporters vs. Evaluators
BetterLesson partners with education organizations to reimagine professional learning, build teacher and leader capacity, and improve outcomes for all students.
Instruction Partners works shoulder-to-shoulder with leadership teams each step of the way to implement and continuously improve the instructional leadership practices in early literacy, ELA, math, and science.

- Adopt and implement high-quality instructional materials
- Facilitate effective professional learning connected to content and materials
- Support data routines that help teachers understand and meet learning needs
“Train to Sustain” partnerships to ensure that regional center partners receive the training and resources needed to sustain strong instructional leadership in their regions.

1. Training for leaders on a **vision of excellent content instruction** for early literacy, ELA, math, and science
2. Clear guidance for districts on **best practices for implementing high-quality instructional materials (HQIM)**—anchored in the *Curriculum Support Guide*
3. A **model for effective professional learning (PL)**, as well as training for LEA and school leaders on how to provide that PL—anchored in the *Professional Learning Conditions and Practices*
4. **Coherence** across intervention systems and/or school improvement structures, HQIM, and PL
Creating an Instructional Vision and Core Beliefs

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>manipulate</td>
</tr>
<tr>
<td>Repetition</td>
<td>Ask questions</td>
</tr>
<tr>
<td>Common language K-12</td>
<td>Anchor charts</td>
</tr>
<tr>
<td>Facilitate w/ feedback</td>
<td>Word wall/vocab practice</td>
</tr>
<tr>
<td>Vertical alignment</td>
<td>Connections to previous learning (anchor charts)</td>
</tr>
<tr>
<td>Develop formulas</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pose purposeful Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
</tr>
<tr>
<td>Show me... (explicit)</td>
</tr>
<tr>
<td>Think Pair Share</td>
</tr>
<tr>
<td>model/demonstrate</td>
</tr>
<tr>
<td>Use your resources</td>
</tr>
<tr>
<td>Explain why/how...</td>
</tr>
<tr>
<td>Evaluate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use appropriate tools strategically</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
</tr>
<tr>
<td>- model</td>
</tr>
<tr>
<td>- correct vocabulary</td>
</tr>
<tr>
<td>I do, you do, we do</td>
</tr>
<tr>
<td>independently, groups</td>
</tr>
<tr>
<td>follow expectations</td>
</tr>
<tr>
<td>manipulatives</td>
</tr>
<tr>
<td>notebooks</td>
</tr>
<tr>
<td>dry erase boards</td>
</tr>
</tbody>
</table>
Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Effective Mathematics Teaching Practices

1. Establish mathematics goals to focus learning.
2. Implement tasks that promote reasoning and problem solving.
3. Use and connect mathematical representations.
4. Facilitate meaningful mathematical discourse.
5. Pose purposeful questions.
6. Build procedural fluency from conceptual understanding.
7. Support productive struggle in learning mathematics.
8. Elicit and use evidence of student thinking.
Connect to Vision

Build or advance math knowledge
- refer to prior problems
- examples
- make connections
- build math vocabulary
- focus on process

Create an engaging learning environment
- using hands-on manipulatives
- turn and talk
- I do, we do, you do
- turn and talk
- open ended tasks
- multiple representations
- incorporate movement
- grouping
- solve more than 1 way

Connect and apply math skills
- different ways to solve
- find a way that works for student
- repetition problems/practice/make
- make up your own problem
- partners/small groups
- writing
- referencing prior knowledge
- modeling
- spark your learning
- real world, real life, relatable
Instructional Vision for Mathematics

In the _____ School District, we will build on and advance math knowledge that students have learned in past units and previous grades. We will create an engaging learning environment for students to develop an understanding of key math concepts so they can see how they are connected and apply their skills to solve problems and tasks.

In the _____ City Schools, our Elementary Math Team aspires to cultivate a learning environment where students acquire fluency in mathematical concepts and develop an understanding of their real-world applications. Through rigorous problem-solving and critical thinking, students are empowered to approach challenges with resilience and perseverance. Students will collaborate as a community of critical thinkers to become lifelong mathematical thinkers.
Instructional Vision for Mathematics

At _____ Elementary, all children are capable of learning mathematics and being successful students. Students and teachers accept the challenge of creating a safe environment for higher-order thinking and problem-solving that is aligned with the rigor of grade-level expectations.
<table>
<thead>
<tr>
<th>Teacher Actions</th>
<th>Student Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Teachers reference mathematical connections and provide daily opportunities to communicate mathematically with higher-order thinking problems as expected by the OH Math Learning Standards.</td>
<td>● Students use previous knowledge to communicate their mathematical thinking with themselves and others to engage in new grade-level learning.</td>
</tr>
<tr>
<td>● Teachers create a safe environment to take risks by modeling how mathematics is used in the real world.</td>
<td>● Students are empowered to persist through challenges using mathematics in real-world situations.</td>
</tr>
<tr>
<td>● Teachers prepare for instruction by planning for relevant strategies and models (representations) for problem-solving using high-quality instructional materials.</td>
<td>● Students use relevant strategies and representations to communicate mathematically with access to high-quality instructional materials.</td>
</tr>
</tbody>
</table>
Core Beliefs

All students are capable of learning to the highest levels.

- All students deserve strong, engaging instruction supported by highly aligned instructional materials and resources that make them excited about learning.
- Materials support the ultimate goal, which is student engagement and learning.
- Students learn at their own pace.

Group 2: Kellie, Mary Ann, Dan, Ervin

Core Beliefs

- All children can learn and be successful students.
- Teachers need high quality materials and instruction.
- Community “buy-in” is key.
Unit Internalization and Lesson Prep

Unit Internalization

Lesson Prep
Instructional Rounds/ Learning Walks
Instructional Rounds/Learning Walks

Instruction Partners
- 15 minutes
- Math Instructional Practice Guide

Instructional Rounds are...
- Non-evaluative
- 15-minute snapshots of instruction
- Used to understand school- and system-wide trends
- Grounded in the Instructional Practice Guide (IPG)

Better Lesson
- 15 minutes
- Student Centered Mathematics Rubric-choices to use

- a tool to inform school leaders as they create a plan to support teachers
- an opportunity to experience a replicable process that school leaders can use on an ongoing basis to inform plans for their schools

- Use an aligned tool
- Collect authentic artifacts
- Student-centered/ non-evaluative
- Sustainable and replicable
Math Classroom Observation Rubric (Based on Instructional Practice Guide)

Standard Alignment: Does the lesson reflect the demands of the standards?

<table>
<thead>
<tr>
<th>Instruction meets the demand of the standard.</th>
<th>The instruction meets the demand of the standard or pairing of standard(s).</th>
</tr>
</thead>
</table>

Core Action 1: Does the lesson ensure the work of the enacted lesson reflects the Focus, Coherence, and Rigor required by college- and career-ready standards in Mathematics?

<table>
<thead>
<tr>
<th>A. The goal of each lesson reflects mathematics within the grade level standards.</th>
<th>Yes - The goal of the lesson focuses on mathematics within the grade level standards.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Content is linked to prior math knowledge to increase access to grade level math concepts for students with unfinished learning</td>
<td>Yes - Connections are being made to help students think about the math in a coherent way that helps them access grade level materials.</td>
</tr>
<tr>
<td>A. The enacted lesson intentionally targets the aspect(s) of rigor (conceptual understanding, procedural skill and fluency, application) called for by the standard(s) being addressed.</td>
<td>Circle the aspect(s) of rigor targeted in the standard addressed in this lesson: Conceptual, Procedural, Application.</td>
</tr>
</tbody>
</table>

Core Action 2: Does the lesson employ instructional practices that allow all students to learn the content of the lesson?

<table>
<thead>
<tr>
<th>A. The teacher makes the mathematics of the lesson clear through the use of explanations, representations, tasks, and/or examples.</th>
<th>4 — A variety of instructional techniques and examples are used to make the mathematics of the lesson clear.</th>
</tr>
</thead>
</table>

Student Mastery: Did students master or move towards mastery of the content of the lesson?

<table>
<thead>
<tr>
<th>Students exhibit a strong grasp of the content of the lesson.</th>
<th>Students are moving towards a strong grasp of the content of the lesson.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 — Most students 3 — Some students 2 — Few students 1 — No students</td>
<td></td>
</tr>
</tbody>
</table>
Math IPG Guiding Questions to Support Informal Instructional Rounds

<table>
<thead>
<tr>
<th>Core Action 1:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. The enacted lesson focuses on the grade-level cluster(s), grade-level content standard(s), or part(s) thereof.</td>
<td></td>
</tr>
<tr>
<td>- To which standard was the enacted lesson aligned?</td>
<td></td>
</tr>
<tr>
<td>- Is that standard at grade level? Was the content above or below grade level? Was the content a superficial attempt to cover grade-level content?</td>
<td></td>
</tr>
<tr>
<td>- If there are off grade level components, are they directly related to a grade level concept that the teacher is guiding students toward?</td>
<td></td>
</tr>
<tr>
<td>B. The enacted lesson appropriately relates new content to math content within or across grades.</td>
<td></td>
</tr>
<tr>
<td>- Did the enacted lesson relate to prior skills and understanding?</td>
<td></td>
</tr>
<tr>
<td>- To what content would we expect the lesson to relate? (answering this question will help us get a clear sense as to what we should see and support our answer for the next question)</td>
<td></td>
</tr>
<tr>
<td>- Were the connections in the enacted lesson weak or strong?</td>
<td></td>
</tr>
<tr>
<td>C. The enacted lesson intentionally targets the aspect(s) of rigor for the standard (conceptual understanding, procedural skill and fluency, and/or application).</td>
<td></td>
</tr>
<tr>
<td>- Given the standard, what aspect(s) of rigor are called for?</td>
<td></td>
</tr>
<tr>
<td>- Did the lesson target an appropriate aspect of rigor? Did it deviate?</td>
<td></td>
</tr>
<tr>
<td>- If the lesson did deviate, the rest of the IPG is going to be in the 1-2 bucket.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Action 2:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. The teacher makes the mathematics of the lesson clear through the use of explanations, representations, tasks, and/or examples.</td>
<td></td>
</tr>
<tr>
<td>- Was instruction focused on showing students how to get an answer or focused solely on answer getting? Or was the lesson focused on the mathematics?</td>
<td></td>
</tr>
<tr>
<td>B. The teacher deliberately checks for understanding to surface misconceptions and opportunities for growth to provide feedback to students.</td>
<td></td>
</tr>
<tr>
<td>- Were there checks for understanding conducted during the lesson? (be careful to distinguish CFUs from generic monitoring of student work)</td>
<td></td>
</tr>
<tr>
<td>- Were misconceptions/opportunities for growth surfaced?</td>
<td></td>
</tr>
<tr>
<td>- Were students provided with feedback? Were they expected to incorporate feedback into their work?</td>
<td></td>
</tr>
<tr>
<td>F. Students from historically marginalized communities consistently receive supportive feedback that affirms their abilities and potential as mathematicians.</td>
<td></td>
</tr>
<tr>
<td>- Did students from historically marginalized communities receive feedback?</td>
<td></td>
</tr>
<tr>
<td>- Did the feedback extend beyond stating whether answers were right or wrong?</td>
<td></td>
</tr>
<tr>
<td>- Did the feedback position the student as competent and a valuable contributor to the class?</td>
<td></td>
</tr>
<tr>
<td>- Did the feedback maintain high expectations and challenge the students to think more deeply?</td>
<td></td>
</tr>
</tbody>
</table>

Student Mastery: Students exhibit a strong grasp of the content of the lesson. Are students mastering the content that is provided in the classroom, even if that content is not fully aligned to the standards?
Math IPG 1C Aspects of Rigor

Core Action 1C: Aspects of Rigor

The enacted lesson targets the aspect(s) of rigor (conceptual understanding, procedural skill and fluency, application) called for by the standard(s) being addressed.

<table>
<thead>
<tr>
<th>Rigor in the Standards</th>
<th>Conceptual Understanding</th>
<th>Procedural Skill & Fluency</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>The word ‘understand’ is used in the Standards to set explicit expectations for conceptual understanding. The ‘why and why?’</td>
<td>The Standards call for speed and accuracy in calculation. Students are given opportunities to practice core functions such as single-digit multiplication so that they have access to more complex concepts and procedures.</td>
<td>The Standards call for speed and accuracy in calculation. Students are given opportunities to practice core functions such as single-digit multiplication so that they have access to more complex concepts and procedures.</td>
<td></td>
</tr>
</tbody>
</table>

Describing Rigor

- The Standards call for understanding of key concepts, such as place value and ratios. Students must be able to access concepts from a number of perspectives so that they are able to see math as more than a set of mnemonics or discrete procedures.

Student Actions

- Explain mathematical concepts through discussion and reflection writing
- Reason about multiple representations for a math concept
- Explain connections between mathematical concepts
- Reason how different strategies are similar and different
- Use manipulatives and visual representations
- Develop and use algorithms
- Explain why behind the procedures
- Calculate with efficiency and accuracy
- Apply math knowledge to new scenarios by choosing appropriate tools
- Take time to problem solve
- Share and justify methods

Teacher Actions

- Emphasize sense making
- Provide opportunities for students to explain their reasoning
- Encourage use of manipulatives and multiple visual representations
- Refrain from tricks and tips that are removed from sense making (Keep Change Flip)
- Provide opportunities for students to explain the math concepts behind their procedures
- Engage students in error analysis to explain the procedural mistake
- Provide spiraled practice and feedback to build fluency
- Refrain from presenting algorithms without working to develop them with students first
- Refrain from encouraging rote memorization of steps
- Emphasize justification of methods and reasonableness of solutions in context
- Provide time for students to engage in problem solving
- Provide students opportunities to share and discuss different solution methods

Language in the Standard that indicates an element of rigor

- Understand
- Explain
- Interpret
- Recognize
- Reason
- Justify
- Represent
- Compare
- Describe
- Fluently
- Add/Subtract/Multiply/Divide
- Calculate
- Measure
- Count
- Compute/Solve
- Evaluate
- Read/Write
- Real world
- Design
- Develop
- Scenarios
- In Context

Instructional Questions

- How does this relate to...?
- How do you know that your strategy works?
- How do you know (show) that your result is accurate and reasonable for this context?
- Explain to me why, for this situation, you did...
- How do you know what works every time? (or when does that not work?)
- What other method/strategy might have worked?
- Is there a more efficient strategy?
- What did you notice in the problem that led you to use that strategy?
- Write a story for this (expression, equation, function, etc.)
Learning Walk Tool

Student-Centered Mathematics

Topic: Communicate Mathematical Thinking

Classroom #:
Educator Name:

Grade:
- K-2
- 3-5
- 6-8
- 9-12

Class Observation Time:
- Beginning
- Middle
- End

OUTCOME

I create an environment that encourages students to communicate their mathematical thinking with each other.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>What this may look like:</th>
</tr>
</thead>
</table>
| A. Students have opportunities to talk to each other to make sense of math tasks. | - Students are arranged in small groups of 2-4.
- Students share their strategies or thinking with each other before whole-class discussion.
- Students are encouraged to share their thinking directly with each other. |
| B. Students listen to each other's ideas and respond respectfully with connections, questions, or critiques. | - Students try out other students' strategies.
- Students ask clarifying questions of each other.
- Students compare and contrast their approaches with each other.
- Students agree or disagree with a student's math thinking. |
| C. Students have access to scaffolds and supports to help them communicate math concepts. | - Students have sentence frames or word banks to refer to.
- Students use drawings and models along with written/verbal explanations.
- Students rehearse sharing their thinking with a partner.
- Students are told what to include in their explanations.
- Students use informal language when exploring new ideas. |
| D. Students receive feedback about the clarity of their communication about math concepts. | - Students revise their responses after talking with a partner.
- Students take feedback and integrate it into their work. |
| E. Students engage in routines, tasks, or discussion structures that encourage communication. | - Collaborative discussions have clear structures such as think-pair-share or round-robin.
- Problems can be solved in a variety of ways or solutions.
- Discussions use a protocol for the content such as notice and wonder, which one doesn't belong, or compare and connect. |
Learning Walk Tool | Student-Centered Mathematics

I create an environment that encourages students to communicate their mathematical thinking with each other.

Circle the rating for each indicator below: E for Evident | SE for Somewhat Evident | NE for Not Evident | NA for Not Applicable

<table>
<thead>
<tr>
<th>Indicator</th>
<th>E</th>
<th>SE</th>
<th>NE</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Students have opportunities to talk to each other to make sense of math tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Students listen to each other's ideas and respond respectfully with connections, questions, or critiques.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Students have access to scaffolds and supports to help them communicate math concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Students receive feedback about the clarity of their communication about math concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Students engage in routines, tasks, or discussion structures that encourage communication.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Student-Centered Math Topics and Outcomes

<table>
<thead>
<tr>
<th>Topic</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Communicating Mathematical Thinking</td>
<td>I create an environment that encourages students to communicate their mathematical thinking with each other.</td>
</tr>
<tr>
<td>B Promoting Reasoning and Problem-Solving</td>
<td>I engage and support students in lessons that promote reasoning and problem-solving.</td>
</tr>
<tr>
<td>C Humanizing Mathematics</td>
<td>I support students in developing positive beliefs about math and about themselves as mathematicians.</td>
</tr>
<tr>
<td>D Facilitating Mathematical Discourse</td>
<td>I facilitate mathematical discourse that deepens student understanding.</td>
</tr>
</tbody>
</table>
Immediate Feedback

Summary slide deck for administrators
How we would add to it for feedback to teachers based on experience that day

Glows/Grows
The team left post-it notes
Circled what you saw and left scripted notes
+’s and Thoughts

INSTRUCTION PARTNERS

BetterLesson
Cycle of Continuous Learning and Growth

- Create a plan align this with other building initiatives, OTES 2.0, District strategic plan,...
- Pinpoint one or two areas of focus for each teacher next year
- Find resources from NCTM, Better Lesson, etc. that match the areas
- Prioritize: not just a one a done (districts want this to continue both within the school it’s in and in other grade levels in the district)
- Cycle of growth graph
Data-Driven Cycles of Improvement

1. Observe and collect evidence
2. Build and add capacity
3. Reflect and create action plan
Partnership model

Partnership launch

- Intake questions
- Diagnostic instructional rounds
- Generic intake questions
- Teacher focus groups/survey

Theory of action

- Identify evidence-based problem
- Do root cause analysis for identified problem
- Construct a long-term theory of action
 - Determine your ideal end state
 - Name what needs to change in order to get there

Short cycles of improvement

- Identify and commit to a bite-sized change idea for an identified short period of time
- Determine how you will measure effectiveness
- Operationalize the plan
- Stepback and study results of short cycle in relation to the long-term theory of action
- Consider next steps
Action planning key levers

Vision
- Establish and implement a vision for mathematics instruction
- Establish and implement expectations for use of your HQIM

Internalization
- Unit internalization
- Lesson preparation

Observation and Coaching
- School climate
- Strengthening observation practices
- Teacher coaching
<table>
<thead>
<tr>
<th>IPG Indicator</th>
<th>10/11/23</th>
<th>3/21/24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Alignment</td>
<td>3.0</td>
<td>3.4</td>
</tr>
<tr>
<td>Mastery</td>
<td>2.5</td>
<td>2.8</td>
</tr>
<tr>
<td>1A: Grade level standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B: Connections to prior knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C: Targets aspect(s) of rigor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A: Teacher makes math clear</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td>2C: Teacher checks for understanding</td>
<td>1.8</td>
<td>2.6</td>
</tr>
<tr>
<td>2F: Teacher affirms students’ potential</td>
<td>1.8</td>
<td>2.4</td>
</tr>
</tbody>
</table>
There are two bottom-line questions that govern student learning:

1. Are all students getting access to the right content?
2. Are all students supported to learn the content that is taught?
Standards Alignment vs Student Mastery

- Fall 23
- Spring 24

(3.0, 2.5)
(3.4, 2.8)

- Fall 23
- Spring 24
Example of a draft Action Plan

Draft Action Plan for ________ School

Theory of Action

If we support teachers to enact a common vision of mathematics planning and instruction, then teachers will attend to appropriate aspects of rigor for grade-level content, so that students will experience authentic opportunities that prepare them for their future.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy #1 Support Vision (Communicate Vision + Establish expectations for planning, based on the vision)</td>
<td>Emails, websites, etc. + Documented expectations</td>
</tr>
<tr>
<td>Strategy #2 Establish planning protocols for pacing and to maintain grade-level focus</td>
<td>Agendas and Events</td>
</tr>
</tbody>
</table>

Lever: Vision Setting

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Action Step</th>
<th>Owners & Support</th>
<th>Deadline</th>
<th>Progress Monitoring/Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy #1 Support Vision (Communicate Vision + Establish expectations for planning, based on the vision)</td>
<td>Communicate the final vision with teachers, students, leaders, families, and the community. How will this occur?</td>
<td>Beth</td>
<td>May 30</td>
<td>websites, social media, emails, meetings</td>
</tr>
<tr>
<td></td>
<td>Communicate with teachers: expectations of use (planning + implementation + assessments) of the HQIM to activate the final vision and to attend to the specific needs of priority students.</td>
<td>Beth with support from Susan, IP</td>
<td>May 30</td>
<td>document</td>
</tr>
<tr>
<td></td>
<td>Schedule times to observe and provide feedback specific to the vision and supporting expectations for use. (Self-reflections and peer-observations also encouraged.)</td>
<td>Beth, APs</td>
<td>May 30</td>
<td>documentation</td>
</tr>
</tbody>
</table>
Data

INDICATOR A
Students with linguistic and learning differences have scaffolds that support their learning.

- **7 responses**
 - Evident (4)
 - Somewhat Evident (3)
 - Not Evident (0)
 - Not Applicable (0)

- **16 qualitative responses**
 - Students leave the room for leveled skills groups
 - Students were using blocks and shape tiles to build and represent math problems. Students working together at tables as they are building.
 - carpet expectations - criss cross hands to self thumbs up or thumbs down if the 2 words rhyme - gap/plus, keep/leap randomly cold call punchers ready - straight across and then up for the ending sound
 - teacher uses visual movements choppers, punches, etc
 - hands on manipulatives for math students are talking and working independent

INDICATOR B
Students work collaboratively and independently and hold themselves accountable for learning.

- **7 responses**
 - Evident (4)
 - Not Evident (0)

- **7 qualitative responses**
 - Students work collaboratively and independently and hold themselves accountable for learning.
 - Students understand the task at each rotation and are able to self-manage using established routines and procedures.
 - Students engage in independent reading at their level for at least 20 minutes each day.
 - Students engage with differentiated task cards to practice at their skill level.

INDICATOR C
Planning for Curriculum Components: ALL Block 3-5

I effectively plan for differentiated rotations during ALL Block based on student needs.

- A: Students are grouped by skill level during the teacher table and station rotation depending on skill needs.
- B: Students work collaboratively and independently and hold themselves accountable for learning.
- C: Students understand the task at each rotation and are able to self-manage using established routines and procedures.
- D: Students engage in Independent reading at their level for at least 20 minutes each day.
- E: Students engage with differentiated task cards to practice at their skill level.
Learning Walk Data: Identifying Trends

Process

- Determine the **highest ranked** indicator
- Determine the **lowest ranked** indicator
- Deep dive into **trends** across classrooms
Developing a Support Plan

Now, Next, Later

- Sort your ideas into a Now, Next, Later roadmap.
 - What will you focus on first?
 - What do you need to do now to set yourself up for success in the next phases?
 - What do you need to do for long-term success?
- Record your actions using the template in the agenda.
 - Link relevant resources, identify key people and structures
Goal: To intentionally create opportunities for classroom communication and discussions on mathematical thinking that promotes a safe environment for students to both agree and disagree with one another while valuing each other's opinions.

<table>
<thead>
<tr>
<th>Now</th>
<th>Next</th>
<th>Later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers will create one opportunity to have intentional communication and discussions of mathematical thinking.</td>
<td>Between now and January 23rd teachers will continue to work on implementing two different math talk strategies of their choice.</td>
<td>Sharing the rubric for Promoting Reasoning and Problem Solving with teachers after January for the classroom walkthrough on April 16th to help tie in the communication and discussion with mathematical thinking to keep growing with student centered mathematics.</td>
</tr>
<tr>
<td>Timeline: BY November 13th</td>
<td>Refer back to the rubric shared and self reflect using said rubric to assess their own strategies they have implemented during this time.</td>
<td>Susan will be in on the 20th - to also provide feedback.</td>
</tr>
</tbody>
</table>
Developing a Support Plan

Strengths and Next Steps

- What **trends** did you see and how could you support educators to refine their practice?
- What is the most important **trend** for YOUR teachers?
- What **structures** do you have in place to support educators (PLCs, instructional coaches, teacher leaders, video support, etc)?
- What structures or **people** can you tap to support educators to continue to refine their practice?
Strategies to Support Educators

Can be shared as part of coaching, feedback, and tips.

Filter by grade-level
We can build confidence in our students and their abilities.

We can continue to grow our students confidence when it comes to talking mathematics.

We are incorporating these tasks into our lesson planning to increase engagement and content conversations between students.

We are incorporating this strategy because it sparks engagement right away and gets the students talking mathematically while sharing thoughts and ideas with each other.
Wrap Up/Reflections
What are 2 words that resonated with you from this session?
Exit Ticket

https://forms.gle/Bf6cQVrZAzHZkVa18
QR code for Coaching Tools
Coaching Tools/Resources

Example with Instruction Partner District: HMH Into Math

Example for CPM

Student Centered Full Rubric

Student Centered Data Collection Tool with Glows and Grows

Ohio Instructional Practice Guide (IPG)

Math IPG with Guiding Questions

Leadership Reflection Tool
Coaching Tools/Resources

Coaching Questions & Sentence Stems to Support Open-Ended Dialogue

Questioning Guide for Instructional Coaches

Student Centered Coaching Continuum

Shifts in Classroom Practice Self-Assessment

Levels of Classroom Discourse

Try Measure Learn Collaborative Log
Thanks for attending!

CREDITS: This presentation template was created by Slidesgo, and includes icons by Flaticon, and infographics & images by Freepik

Please keep this slide as attribution